Selection of Odor Adsorption Films for Sensory Quantity Evaluation and Estimation Using Fuzzy Learning Vector Quantization
نویسندگان
چکیده
منابع مشابه
Fuzzy-Kernel Learning Vector Quantization
This paper presents an unsupervised fuzzy-kernel learning vector quantization algorithm called FKLVQ. FKLVQ is a batch type of clustering learning network by fusing the batch learning, fuzzy membership functions, and kernel-induced distance measures. We compare FKLVQ with the wellknown fuzzy LVQ and the recently proposed fuzzy-soft LVQ on some artificial and real data sets. Experimental results...
متن کاملFast Learning Algorithm for Fuzzy Inference Systems using Vector Quantization
It is known that learning methods of fuzzy inference systems using vector quantization (VQ) and steepest descend method (SDM) are superior in terms of the number of rules. However, they need a great deal of learning time. The cause could be that both of VQ and SDM perform only local searches. On the other hand, it has been shown that a learning method of radial basis function (RBF) networks usi...
متن کاملFuzzy Learning Vector Quantization Based on Particle Swarm Optimization For Artificial Odor Dicrimination System
An electronic nose system had been developed by using 16 quartz resonator sensitive membranesbasic resonance frequencies 20 MHz as a sensor, and analyzed the measurement data through various neural network as a pattern recognition system. The developed system showed high recognition probability to discriminate various single odors even mixture odor to its high generality properties; however the...
متن کاملDecentralized Estimation using distortion sensitive learning vector quantization
A typical approach in supervised learning when data comes from multiple sources is to send original data from all sources to a central location and train a predictor that estimates a certain target quantity. This can be inefficient and costly in applications with constrained communication channels, due to limited power and/or bitlength constraints. Under such constraints, one potential solution...
متن کاملA methodology for constructing fuzzy algorithms for learning vector quantization
This paper presents a general methodology for the development of fuzzy algorithms for learning vector quantization (FALVQ). The design of specific FALVQ algorithms according to existing approaches reduces to the selection of the membership function assigned to the weight vectors of an LVQ competitive neural network, which represent the prototypes. The development of a broad variety of FALVQ alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1995
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.31.357